OPTIMIZATION OF PREVENTIVE MAINTENANCE AND REPLACEMENT INTERVAL OF CRITICAL COMPONENTS IN THE CUMMINS KTA 38D DIESEL GENERATOR

Wakijo¹, Suparno², Eko Krisdiono³, Anton Nugroho⁴

^{1,3,4} Indonesian Naval Technology College, Bumimoro-Morokrembangan, Surabaya 60187, Indonesia ² Department of Industrial and Systems Engineering, Institute Technology Ten November, Surabaya Email: joenavy53@gmail.com

ABSTRACT

The Cummins KTA 38D brand diesel generator is a ship's power generation equipment owned by a supplier to warship electrical needs both at base or in operation. Based on damage report data from 2016 - 2022, the percentage of diesel generator damage reached 38.5% of the total damage to all ship equipment. The results of the analysis using the FTA method cause the failure of the diesel generator to be caused by one of the failure factors in the supporting sub-systems, both from the electrical sub-system, fuel sub-system, air sub-system, fresh water sub-system, seawater sub-system, the lubricant sub-system and the control sub-system were damaged. Calculation using FMECA, there are five critical components based on the RPN value with a "high" risk rating, namely the Body Cover Pump component with the risk of corrosion (205), the Impeller component with the risk of corrosion/cracking (260.5), the Cooler tube component with the risk of leakage (264,7), Mechanical Seal component with risk of damage/leak (192.8), Rectanguler Seal component with risk of leak (196). With a reliability approach and analysis of total cost replacement age preventive maintenance with a minimum reliability limit of 55.84%. It can be proposed maintenance intervals for Body Cover Pump components at 980 running hours with an increase in reliability of 30.87% and maintenance cost savings reaching 14.57%, Impeller components at 1581 running hours with an increase in reliability of 35.79% and maintenance cost savings reaching 29.28%, Cooler tube components at 979 running hours with an increase in reliability of 26.06% and maintenance cost savings reaching 16.40%, mechanical seal components at 1290 running hours with an increase in reliability of 33,20% and savings in maintenance costs reaching 22,57%, the rechtangular seal component on 979 running hours with an increase in reliability of 31.67% and savings in maintenance costs reaching 38.88%.

Keywords: FTA, FMECA, Reliability dan Total Cost Replacement Age

1. INTRODUCTION

A tanker type of warship is designed for fuel distribution and liquid logistics supplies at sea (fleet on replenishment at sea). To support the vital role carried out by the ship, the readiness of the ship's technical condition is an absolute requirement that must be properly maintained. One of the equipment has a vital role on the ship is a diesel generator. Due to the high age and operating hours of the diesel generator, the potential for damage will increase. Damage diesel generators caused by damage a component cannot be known with certainty because

each component has a different reliability and rate of damage.

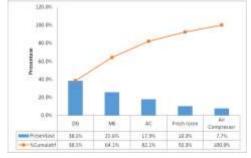


Figure 1. Graphics of equipment damage

According to ship damage report data, the percentage of damage for Cummins KTA 38D diesel generator is highest reached at 38.5% from total equipment damage that occurred during 2016 – 2022. The graphic of equipment damage is presented in figure 1.

There are several weaknesses in the maintenance of the diesel generator system carried out by ship personnel, these weaknesses are:

a. The form of maintenance card for the planned maintenance system is not yet available.

b. Incomplete equipment manual handbook

c. Spare parts and tools maintenance equipment not available

d. Lack of understanding of maintenance by operators,

e. Operators are still having trouble finding the root cause of equipment damage,

f. The equipment operated continuously until a breakdown occurs.

This study aims to determine the factors that cause failure, and optimize preventive maintenance on components that have high criticality in the Cummins KTA 38D diesel generator in order to reduce the number of breakdowns and efficiency in terms of costs using the FTA, FMECA, reliability and total cost replacement age method.

MATERIAL AND METHODE

2.

2.1 Diesel Genartor

The diesel generator is a ship's equipment useful for supplying the electricity needs of the ship. The diesel generator is a combination of a diesel engine and a generator. A diesel engine is a combustion engine with a combustion process that occurs within the engine itself (internal combustion engine) and combustion occurs because pure air is compressed (compressed) in a combustion chamber (cylinder) so that high-pressure air and high heat are obtained, along with being sprayed. the fuel is atomized so that combustion occurs.

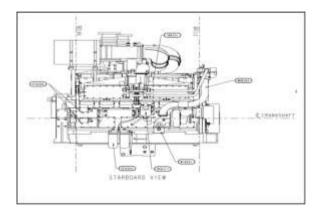


Figure 2. Engine Cummins KTA 38D

Table 1. Specification engine data of diesel generator Cummins KTA 38D Diesel Generator Merk : STAMFORD Merk : CUMMIN Type : LVM634G1 Engine No: 41183836 : KTA38-D(M) AVR : MX321 Model SO No : S060179 Volt : 400 Advert : 880 kw Phase:3 Max. : 970kw KVA : 1100 Idle speed : 650~750 Rpm : 1500 Rpm : 1500r/min Ampere : 1587.8 Freq : 50Hz Produck: 2013 Manufacture: Chongqing Cummins China ID No : X13A021703

2.2 Reliability Diagram Block

To evaluate for the reliability of a component or system, the first is make model the component or system into a reliability block diagram. The composition of the reliability block diagram of the The system consists of structural forms, namely: a. Series structure

A series structure is a system structure where the system is said to be damaged if one of its components is damaged.

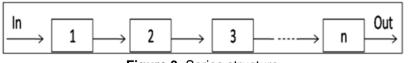


Figure 3. Series structure

b. parallel structures

A parallel structure is a system structure where the system still functioning if at least one

component is functioning or it can be said that the system is damaged if all components are damaged.

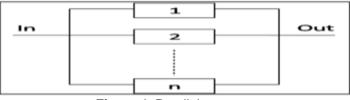


Figure 4. Parallel structure

b.

c.

follows:

system (top level events).

Create a fault tree (fault tree).

Analyze the fault tree (fault tree)

The symbols used in fault tree analysis are as

2.3 Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) is a method of deductive analysis by describing numerical graphs and analyzing how damage can occur and what are the chances of damage (Blanchard, 2004). The FTA steps in a system are as follows:

a. Identify the most important events in the

Table 1. Symbol of Fault Tree Analysis				
Symbols	Description			
\bigcirc	Basic Event			
\bigcirc	Intermediate Fault Event			
\diamond	Undeveloped Event			
\square	External Event			
	Top Event			
	Logic event End gate			
\square	Logic event Or gate			
\triangle	Exclusife Event			

 Table 1. Symbol of Fault Tree Analysis

2.4 Failure Mode Effects and Criticality Analysis (FMECA)

FMECA is a development of FMEA by considering the level of criticality associated with the impact of the component failure mode. This criticality level is analyzed based on a combination severity and probability of occurrence The analysis may be performed according to the following scheme.

a. Definition and delimitation of the system (which components are within the boundaries of the system and which are outside).

b. Definition of the main functions (missions) of the system.

c. Description of the operational modes of the system.

d. System breakdown into subsystems that can be handled effectively.

e. Review of system functional diagrams and drawings to determine interrelation- ships between the various subsystems. These interrelations may be illustrated by drawing functional block diagrams where each block corresponds to a sub-system.

f. Preparation of a complete component list for each subsystem.

g. Description of the operational and environmental stresses that may affect the system and its operation. These are reviewed to determine the adverse effects that they could generate on the system and its components.

Table 2. Severity,	Occurance,	and Detection rating
--------------------	------------	----------------------

Severity	Occurance	Detection	Score
Hazardous Without Warning	> 1 in 2	Absolutely Impossible	10
Hazardous With Warning	1 in 3	Very Remote	9

Very High	1 in 8	Remote	8
High	1 in 20	Very Low	7
Moderate	1 in 80	Low	6
Low	1 in 400	Moderate	5
Very Low	1 in 2000	Moderately High	4
Minor	1 in 15000	High	3
Very minor	1 in 150000	Very High	2
None	< 1 in 1500000	Almost Definitely	1

Component criticality analysis based on failure mode/failure mode using a risk matrix according predetermined criteria. The final results obtained are items that are included in the critical

components, namely components that are included in the "high" rating of risk based on the risk matrix. The overall results of the analysis of the FMECA method will be presented in the form of an FMECA Worksheet.

Table 3. Severity Level.

Severity Level				
Kategori	Ranking	Definition		
Catastrophic	8,1-10	Cause system shutdown.		
Critical	6,1-8	The system cannot function as specified.		
Marginal	4,1-6	The system has decreased function performance.		
Negligible	2,1-4	The system can function with little risk.		
Minor	1-2	The system can function with negligible risk.		

Table 4. Occurrence Level.

Occurrence Level				
Event Frequuency	Occurrence Rating	Definition		
Frequent	8,1-10	Often occur		
Probable	7,1-8	Very likely		
Occasional	5,1-7	Commonly occurs		
Remote	3,1-5	Rarely occurs		
Improbable	1-3	Impossible to happen		

Table 5. Risk Matrix

	SEVERITY						
		Minor	Negligible	Marginal	Critical	Catastropic	
	Frequent	MEDIUM	HIGH	HIGH	HIGH	HIGH	
PROBABILITY	Probable	MEDIUM	MEDIUM	MEDIUM	HIGH	HIGH	
	Occasional	MEDIUM	MEDIUM	MEDIUM	MEDIUM	MEDIUM	
	Remote	LOW	MEDIUM	MEDIUM	MEDIUM	MEDIUM	
	Improbable	LOW	LOW	LOW	LOW	LOW	

2.5 Reliability

Reliability is defined as the probability of a system having performance according to the function required within a certain period of time (Ebeling, 1997). The time that elapses from a

component entering operation until it fails the first time is called the time to failure (TTF). For the purposes of damage analysis, TTF can be considered as a random variable (Ponidi, 2015)

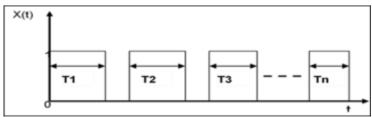


Figure 5. State Variabel X(t) & TTF

The probability of damage occurring when T < t is expressed by F(t), with the Cumulative

Distribution Function (CDF) as follows (Artanto, Budisantoso, & Ahmadi, 2016):

$$F(t) = P\left\{T \le t\right\} = \int_0^t (t)dt$$

Then the reliability function is expressed by the following equation

$$R(t) = 1 - P\{T \le t\} = 1 - F(t)$$

In analyzing the reliability of a system, the term Mean Time To Failure (MTTF) is often used in characterizing the reliability which is expressed by the following equation

$$MTTf = \mu = \int_0^\infty t f(t) dt$$

To state how easy it is for an item to fail and can last up to time T, known as the damage rate, it can be written as follows:

$$\lambda(t) = \frac{f(t)}{R(t)}$$

The damage rate can be divided into three periods (burn in period, useful life period and wear out period) which is commonly called the bathub curve.

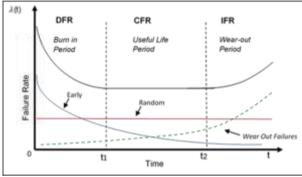


Figure 6. The Bathtub Curve

Based on the distribution classification above, examples of suitable probability models are:

a. Distribution of Decreasing Failure Rate (DFR) Is the Weibull distribution with λ (t) = a.t b for b < 0, with negative memory.

b. Distribution of Constant Failure Rate (CFR) Is an Exponential distribution with λ (t) = λ , memoryless property.

c. Distribution of Increasing Failure Rate (IFR) Is the Weibull distribution with λ (t) = a.t b for b > 0, with the positive property of memory.

2.6 Probability Distribution

The Weibull distribution can describe the condition of the failure rate of components both in the DFR, CFR and IFR areas through variations in the shape parameter values. The Weibull distribution can be written in the form of two or three parameters (Jardine A. S., 1973). While the 3-parameter Weibull distribution has functions including: Reliability function :

$$R_{(t)} = e^{-\left(\frac{t-\gamma}{\eta}\right)^{t}}$$

Failure rate function:

$$\lambda_{(t)} = \frac{\beta}{n} \left(\frac{t - \gamma}{n} \right)^{\beta}$$

Probability Density function (PDF)

$$f(t) = \frac{\beta}{\eta} \left(\frac{t-\gamma}{\eta}\right)^{\beta-1} e^{-\left(\frac{t-\gamma}{\eta}\right)^{\beta}}$$

MTTF (Mean Time to Failure) : $MTTF = \gamma + \eta \Gamma (1 + \frac{1}{\beta}))$ $\beta = \text{Shape Parameter}, \beta > 0$ η = Scale Parameter, η > 0

1 = Location Parameter

 Γ = Gamma function.

 $\begin{array}{l} \text{MTBF (Mean Time Between Failure):} \\ \text{MTBF} - \binom{Total Working Hours}{Frequency Failure} \end{array}$

MTTR (Mean Time To Repaire) : MTTR - (^{Total Break Down Hours} Frequensi Break Down)

2.7 Preventive Maintenance Mode

Improvement of reliability can be achieved by way of preventive maintenance. According to Ebeling (1997), the reliability model assumes that the system returns to its new condition after undergoing preventive maintenance. Reliability at time t is stated as follows

$$R_m(t) = R(t) \qquad \text{untuk } 0 \le t \le T$$

$$R_m(t) = R(T).R(t - T) \text{ untuk } T \le t < 2T$$

T = time interval for damage prevention replacement Rm (t) = system reliability with preventive maintenance R(t) = system reliability without preventive

maintenance P(T) = first preventive maintenance reliab

R(T) = first preventive maintenance reliability probability

R(t-T) = probability of reliability between time t-T after the system is returned to its initial state at time T.

In general, the equation is

 $R_m(t) = R(T)^n R(t - nT) \text{ for } nT \le t \le (n+1)T, \text{ where } n=1,2,3...\text{ ect.}$

n = Number of Treatments

 $R_m (t)$ = Reliability with preventive maintenance $R(T)^n$ = Reliability probability up to n maintenance intervals

R(t-nT) = Reliability probability for the time t-nT of the last preventive maintenance action

In the replacement age model, the expected total replacement cost per unit of time for preventive replacements performed after the l_p age of the part.

Some of the similarities in replacement age are as follows:

The cost of failure cycle (C_f) can be calculated using the equation:

 $C_f = (Technician Cost + Consequential cost + Component cost)()xT_f$

Meanwhile, the preventive cycle cost (C_p) can be calculated using the equation

 $C_p = (Technician Cost + Component cost) xT_p$

Calculation of Total Failure Cost (Tc) can be calculated using the equation:

3. RESULTS AND DISCUSSION

Based on direct observation, guidance from the Cummins KTA 38D engine manualbook and

$$Tc = \frac{C_f}{t_f + T_f}$$

Cf= Cost of failure cycle

t_f=MTBF(MTTF)

T_f=MTTR

Calculation of Total Preventive Cost (Tc) is obtained by using the equation:

$$Tc = \frac{(C_p x Rt_p) + \{C_f x (1 - Rt_p)\}}{(t_p x Rt_p) + \{t_f x (1 - Rt_p)\}}$$

 t_p = Preventive replacement time interval per unit time

 C_f = Damage replacement costs.

 C_p = Preventive replacement cost.

 t_f = Time required for replacement due to damage.

 R_{tp} = Reliability of cycle i when tp.

Based on the book Technical Manual No. 5-698-5 entitled: Survey of Reliability and Availability Information For Power Distribution. Power Generation, and Heating, Ventilating & Air Conditioning (Hvac) Components for Commercial, Industrial, and Utility Installations issued by Headquarters Department Of The Army, value The recommended diesel generator reliability is according to Table 6.

interviews with respondents and experts, there are 7 (seven) systems that support the operation of diesel generators arranged in series structure.

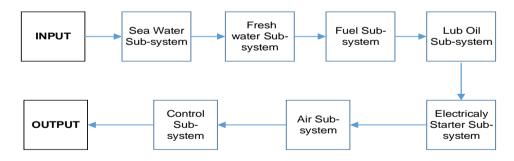


Figure 8 : Block Diagram of Diesel Generator

Acccording the block diagram of diesel generator system has a series structure, where the system is said to be damaged if one of its components is damaged and the system is said to be good if all components are in good condition

3.1 Faul Tree Analysis of Diesel Generator

In the FTA method, the failure of the diesel generator is a top event, the diesel generator

operational support systems are developed into a fault tree to find the factors that cause the diesel generator to fail. Factor analysis diesel generator failure can be caused by one of the existing systems. The relationship/logic event of the diesel generator failure factors is to use an OR gate. This shows that the failure of the diesel generator can be caused by one of the failure factors. For detail of factor cause diesel generator fail on figure 10.

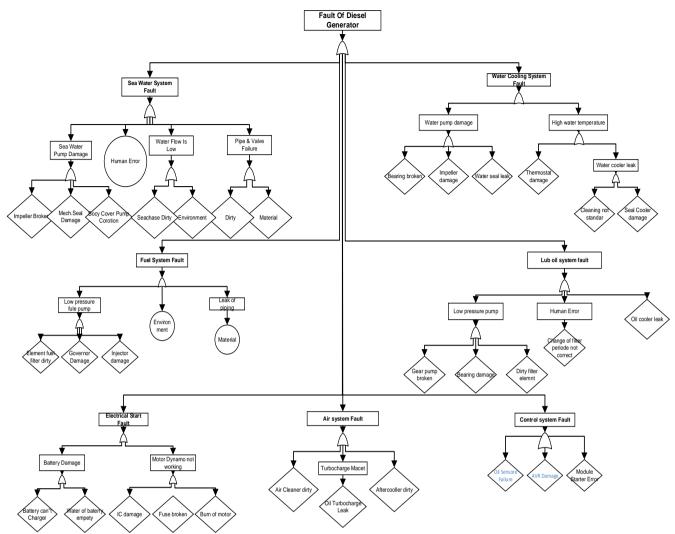


Figure 9. Fault Tree Diagram of Diesel Generator

3.2 FMECA of Diesel Generator

The diagram in figure 9, shows which components are the cause of the sub-system on the diesel generator that affects engine performance. To find out the failure in detail using the Failure Mode Effect and Citical analysis which is applied to the diesel genartor system. The diesel generator system is divided into 7 (seven) sub-systems, namely fresh water sub-system, seawater subsystem, air sub-system, fuel sub-system, lubricant sub-system, electric start sub-system and control sub-system.

a. Sea water sub-system, function each component are of tube coole for heat absorber coolant, impeller for make faster in and out fluid, gasket pump for body casing insulator, Casing cover for protective rotary component pump, Mechanical seal for obratction fluid leakage, strainer for filtering sea water waste, shaft SW pump for pass on rotary moment from driver, and bearing SW pump for keep friction between shaft rotary and body casing.

b. Coolant water sub-system, function each component are, bearing for keep friction between

shaft rotary and body casing, seal oil and water for prohibit oil and water get involved, thermostate for keep stability water temperature, rectanguler seal HE for obstauction fluid leakage, and heat excahanger tube for heat absorber coolant,

c. Fuel oil sub-system, function each component are, element fuel filter for filtering fuel sludge, main shaft fuel pump for pass on rotary moment from driver, o-seal drive shaft and seal wire for obstuction fuel leakage, and injector for fuel spraying to combution chamber

d. Lub oil sub-system, function each component are bushing oil pump for vibration muffle, element oil filter for filtering oil sludge, and seal oil heat exchanger for leakage oil inhibitor,

e. Air intake and exhaust Sub-system, funtion each component are air cleaner for filtering air waste, aftercooler for absorb heat of air intake, seal rectanguler ring for air leakage inhibitor and bushing turbocharger for vibration muffle and oil leak inhibitor

f. Elelctricaly starter sub-system, function each component are, battery for electric power storage,

and modul starter for regulating starting engine process

g. Control sub-system, function ecah component are, AVR for electrically controlling fuel and Engine oil sensor for read oil temperature.

The FMECA process included components failure mode, failure cause, effects of the failure on the transformer/network and recommendations were formulated to curb future failure. The criticality analysis of each failure mode was performed by assigning to each failure mode a Risk Priority Numbers (RPN), and the results of the entire FMECA process is represented in table 6. Summarizes the failure modes of diesel geneator components each sub system, failure causes, effects of component failure of the diesel genator units or the entire grid and the Risk Priority Numbers based on how severe the effects of a failure are, how frequent a fault occurs and how easy is it to detect the failure before it occurs. Risk Priority Numbers assignments to failure modes are referred to as criticality analysis and specify the critical nature of each component failure. Sample calculation RPN on Tube cooler sea water is ;

RPN

$$\frac{\binom{6+7+7+6+8+8+8+7}{8} \times \binom{7+6+7+6+8+9+8+7}{8} \times \binom{4+3+5+5+6+7+6+5}{8}}{= (7,1) \times (7,3) \times (5,1)}$$

= 264.7

				b. FIVIECA WORKS	licci		-	-	
No	Item	Function	Failure Mode	Failure Causes	Failure Effect	S	0	D	RPN
W1	Tube Cooler Sea Water	Heat absorber coolant	Mechanica I	Tube cooler corrosion	Coolant and sea water mixed	7. 1	7. 3	5. 1	264. 7
W2	Impeller	Make Faster in/0ut fluid from pump	Mechanica	Impeller corrosion and crack	Suction and press pump can"t work perfection	8, 1	7. 1	4. 5	260. 5
W3	Gasket pump	Body casing insulator	Mechanica I, thermal	Gasket damage	Permeate water from	3. 9	6. 4	4. 6	114. 3
W4	Body Cover	Protective rotary componen pump	Material, Mechanica	Material corrosion	Pump can't vaccum	6. 6	7. 5	4. 1	205. 0
W5	Mechanical Seal	Obstruction fluid leakage	Mechanica	Mech.Seal damage	Pump suction not perfection	6, 1	8. 1	3, 9	192. 8
W6	Strainer	Filtering sea water waste	Mechanica I, material	Material corrosion	Sludge go into cooling water	5. 5	6. 1	3. 5	117. 9
W7	Shaft SW Pump	Pass on rotary moment from driver	Mechanica I	Wear out and corrosion of shaft	impeller not balance occure of vibration	8. 0	2. 3	6. 1	110. 3
W8	Bearing SW pump	Fiction keeping between shaft rotary and body casing	Mechanica I	Bearing broken and worn out	Pump suction not perfection	5. 5	5. 1	4. 4	123. 3
W9	Bearing Coolant Pump	Fiction keeping between shaft rotary and body casing	Mechanica I	Bearing broken and worn out	Pump suction not perfection	5. 3	4. 4	4. 8	109. 1
W1 0	Seal Water Coolant Pump	Prohibit oil and water get involved	Mechanica I, thermal	Solidify of seal or damage	less of pump suction	7. 3	2. 9	5. 6	117. 2
W1 1	Seal oil Coolant Pump	Prohibit oil and water get involved	Mechanica I, thermal	Solidify of seal or damage	Pump suction not perfection	6. 8	3. 3	5. 5	120. 7
W1 2	Thermostat	Keep Stability water temperature	Mechanica I, thermal	Termostate can"t work	Coolant temperature Overheating	6. 5	2. 6	6. 3	106. 6
W1 3	Rectanguler Seal HE	Obstruction fluid leakage	Mechanica I, thermal	Solidify of seal or damage	Leakage coolant	6. 1	8. 0	4. 0	196. 0
W1 4	Heat Exchanger	Heat absorber coolant	Mechanica I, thermal	Tube HE corrosion	Coolant and sea water mixed	8. 0	2. 5	5. 9	117. 5
W1 5	Element Fuel Filter	Filtering Fuel Sludge	Mechanica I	Element filter clogged	Less of fuel pressure	7. 0	7. 0	2. 1	104. 1
W1 6	Main Shaft Fuel Pump	Pass on rotary moment from driver	Mechanica I	Shaft worn out	Gear pump can"t rotatri occure vibration	8. 1	2. 1	5. 9	101. 4
W1 7	O-Seal Drive Shaft	Obstruction fuel leakage	Mechanica I, thermal	Solidify of seal or damage	Pump suction not perfection	7. 1	7. 3	5. 1	264. 7
W1 8	Seal Wire	Obstruction fuel leakage	Mechanica I, thermal	Solidify of seal or damage	Pump suction not perfection	8, 1	7. 1	4. 5	260. 5
W1 9	Injector	Fuel spraying to chamber	Mechanica I	Injector Shim worn out	High of exhaust temperatur	3. 9	6. 4	4. 6	114. 3
W2 0	Bushing Oil pump	Vibration muffle	Mechanica I	Bushing worn out	Crude noise and oil leak	6. 6	7. 5	4. 1	205. 0
W2 1	Element oil Filter	Filtering oil Sludge	Mechanica I	Element filter clogged	Less of oil pressure	6, 1	8. 1	3, 9	192. 8
W2 2	Seal oil Heat Exchanger	Leakage oil inhibitor	Mechanica I, thermal	Solidify of seal or damage	Oil Leakage	5. 5	6. 1	3. 5	117. 9
W2 3	Battery Accu	Electric Power Storage	thermal, Electrical	Less of accu water or element damage	No electrik power to starting engin	8. 0	2. 3	6. 1	110. 3
W2 4	Gear pinion motor	Pass on rotary power of starter	Mechanica I	Knocked gear or fault	Flywheel can <t td="" turning<=""><td>5. 5</td><td>5. 1</td><td>4. 4</td><td>123. 3</td></t>	5. 5	5. 1	4. 4	123. 3
W2	Air Cleaner	Filtering air waste	Mechanica	Element filter	Decreasing volume of air	5.	4.	4.	109.

Table 6. FMECA worksheet

No	Item	Function	Failure Mode	Failure Causes	Failure Effect	S	0	D	RPN
5				clogged		3	4	8	1
W2	Aftercooler	Absorb heat of air	Mechanica	Aftercooler	Air intake temperatur high	7.	2.	5.	117.
6	Altercooler	intake	l, thermal	corrosion	All Intake temperatur high	3	9	6	2
W2	Seal	Air Leakage inhibitor	Mechanica	Solidify of seal or	Air leakage	6.	3.	5.	120.
7	Rectanguler	All Leakage Inhibitor	l, thermal	damage	All leakage	8	3	5	7
W2	Bushing TC	Vibration muffle and	Mechanica	Bhusing worn out	Crude noise and oil leak	6.	2.	6.	106.
8	Dushing TC	oil leakage inhibitor	1	Bridsing worn out	Crude Hoise and on leak	5	6	3	6
W2	AVR	Electricaly	Thermal,	Short Circuit	Engine rotation unstable	6.	8.	4.	196.
9	AVK	Controlling fuel	Electrical	Short Circuit	Engine location unstable	1	0	0	0
W3	Engine oil	Read oil	Thermal,	Short Circuit	Engine can"t start	8.	2.	5.	117.
0	sensor temp.	temperature	Electrical	Short Circuit	Lingine can t start	0	5	9	5
W3	Modul	Regulating starting	Thermal,	Short Circuit	Engine can"t start	7.	7.	2.	104.
1	Starter	engine process	Electrical		Engine can t start	0	0	1	1
			R	PN Value = 125,5					

The highest RPN shows the components on which much attention should be tilted. Any 7 (seven) component have the highest RPN values

their are impeller, tube cooler sea water, casing cover, battery accu, mechanical seal, strainer and seal rectanguler heat excahanger

Table 7. Risk Matrix				
No	Kampanan	Conse	quency	Risk Level
NO	Komponen	Severity	Occurrence	RISK Level
W1	Tube Cooler Sea Water	Critical	Probable	High
W2	Impeller	Catastrophic	Probable	High
W3	Water Seal	Negligible	Probable	Medium
W4	Body Cover Pump	Critical	Frequent	High
W5	Mechanical Seal	Critical	Probable	High
W6	Strainer	Marginal	Occasional	Medium
W7	Shaft SW Pump	Critical	Improbable	Low
W8	Bearing SW Pump	Marginal	Occasional	Medium
W9	Bearing Coolant Pump	Marginal	Remote	Medium
W10	Seal Water Coolant Pump	Critical	Improbable	Low
W11	Seal oil Coolant Pump	Critical	Remote	Medium
W12	Thermostat	Critical	Improbable	Low
W13	Rectanguler Seal HE	Critical	Probable	High
W14	Heat Exchanger Tube	Critical	Improbable	Low
W15	Element Fuel Filter	Critical	Occasional	Medium
W16	Main Shaft Fuel Pump	Catastrophic	Remote	Medium
W17	O-Seal Drive Shaft	Marginal	Remote	Medium
W18	Seal Wire	Marginal	Remote	Medium
W19	Injector	Critical	Remote	Medium
W20	Bushing Oil pump	Critical	Improbable	Low
W21	Element oil Filter	Critical	Occasional	Medium
W22	Seal oil Heat Exchanger	Critical	Remote	Low
W23	Battery Accu	Marginal	Occasional	Medium
W24	Gear pinion motor	Critical	Improbable	Low
W25	Air Cleaner	Critical	Occasional	Medium
W26	Aftercooler	Critical	Improbable	Low
W27	Seal Rectanguler ring	Marginal	Remote	Medium
W28	Bushing TC	Catastrophic	Improbable	Low
W29	AVR	Critical	Remote	Medium
W30	Engine oil sensor Temperatur	Critical	Remote	Medium
W31	Modul Starter	Critical	Improbable	Low

Table 8. Risk mapping

Frequent				4	
Probable		3	21	1,5,13	2
Occasional			8	6,15,21,23,25	
Remote		14	9,17,18,27	11,19,22,29,30	16
Improbable		26		7,10,12,14, 20,24,26,31	28
	Minor	Negligible	Marginal	Critical	Catastrophic

RPN calculations and risk mapping for critical components of diesel generators are have effect of engine running is shutdown, which have an RPN value above the average and have a risk with a "High" rating. So that the components that can be categorized as critical components of diesel generators.

Table 9. Cr	itical Com	ponents
-------------	------------	---------

No	ltem	Function	Failure Mode	Failure Causes	Failure Effect	Risk Level	RPN
W1	Tube Cooler Sea Water	Heat absorber coolant	Mechanical	Tube cooler corrosion	Coolant and sea water mixed	High	264.7
W2	Impeller	Make Faster in/0ut fluid from pump	Mechanical	Impeller corrosion and crack	Suction and press pump can"t work perfection	High	260.5
W4	Body Cover	Protective rotary componen pump	Material, Mechanical	Material corrosion	Pump suction not perfection	High	205.0
W5	Mechanical Seal	Obstruction fluid leakage	Mechanical	Mech.Seal damage	Pump suction not perfection	High	192.8
W13	Rectanguler Seal HE	Obstruction fluid leakage	Mechanical, thermal	Solidify of seal or damage	Leakage coolant	High	196.0

3.2 Determination of Maintenance Time Interval

Based on the report damage and repair equipment, the data between damage and the

length of time for repairs can be seen in Table 10. The following is a recapitulation of component TTF and TTR data.

Table 10. TTF and TTR data of Critacal Component

No	Body Cover Pump		Pump Mech.Seal		Rech. Seal		Impeller		Cooler Tube	
	TTF	TTR	TTF	TTR	TTF	TTR	TTF	TTR	TTF	TTR
1	341	1:20	672	4:00	824	2:30	2217	4:45	594	9:30
2	672	4:30	384	4:20	945	4:15	801	4:30	1422	6:55
3	384	5:30	1138	4:45	448	3:15	1922	5:45	868	4:15
4	1138	1:15	2041	3:00	680	4:10	1946	4:15	786	5:15
5	1173	1:35	2318	5:15	121	3:30	1130	4:20	1279	7:45
6	2463	6:10	1822	3:45	235	2:45	1203	4:35	797	6:55
7	723	2:30	1200	4:15	3633	2:35	2195	4:40	845	8:35
8	1822	5:15	911	4:50	2313	2:15	1478	4:55	1211	7:05
9	1072	2:00	1523	4:25	1045	4:25	1071	5:30	1531	6:45
10	1523	1:25	2742	5:30	506	4:05	2407	4:10	1974	6:40
11	2742	1:40	1479	4:10	1220	2:45	1462	3:15	995	9:00
12	479	1:30	851	3:15	362	2:20	1305	3:55	2287	7:45
13	1223	4:30	803	3:35	1231	1:35	1893	3:50	1403	9:50
14	2370	5:45	2198	3:25	1203	1:30	2265	4:00	1669	8:15
15	804	1:00	1975	3:00	1211	2:05			929	5:55
16	579	1:45	1158	3:20	1875	2:25			1453	7:05
17	2891	1:50			1358	2:40			722	5:20
18	1781	1:05			995	2:30			1031	6:50
19					1537	4:30			2621	8:50
20					1179	2:05			3005	5:00
21					851	2:15				
22					803	1:45				
23					311	1:40				
24					2394	1:50				
25					1188	3:15				
26					758	1:55				
27					680	2:15				
28					777	2:45				
29					1874	2:50				

Data processing using the Weibull 6++ program all component obtained the distribution

and component parameters according to table 11.

No	Component	Distribution	Parameter	
1	Rody Cover Bump		β	1.3242
1	Body Cover Pump	Weibull 2	η	1472.7243
2	Mechanical Seal Weibull 2		β	2.2074
2	Mechanical Seal		η	1647.1035
3	Rechtanguler Seal HE	Weibull 2	β	1.669
5			η	1255.9585
4	Impeller	Weibull 2	β	3.4539
4	Impeller		η	1847.9991
			β	1.2226
5	Cooler Tube	Weibull 3	η	907.299
			γ	545.995

Table 11. Distribution and Parameter of Critacal Component

After conduct the distribution of TTF data through the Weibull++6 program, the parameters β , η and γ are obtained, so the MTBF/MTTF value of each component can be determined. Based on maintenance and repair journals and interviews with chief engginer, the body cover pump, impeller and cooler tube components are repairable components so MTBF is used to calculate them.

As for the mechanical seal and rectangular seal components, they are components that are non-repairable (cannot be repaired) so that the data used uses MTTF calculations. The following is a recapitulation of MTBF, MTTF, MTTR values and reliability of critical diesel generator components in table 12.

 Table 12.
 Recapitulation of MTBF/ MTTF, MTTR values and reliability

	No	Component	MTBF	MTTR	R(t)	F(t)	λ(t)
	1	Body Cover pump	1343.3	2.81	0.4126	0.5874	0.000796035
	2	Mechanical Seal	1458.7	4.08	0.4653	0.5347	0.001013060
	3	Rectangular Seal	1122.1	2.71	0.4367	0.5633	0.001101017
Ī	4	Impeller	1663.9	4.58	0.4986	0.5014	0.001300763
	5	Cooler Tube	1371.1	7.17	0.3290	0.6710	0.002232385

In order to meet the minimum reliability requirements for diesel generator equipment of 0,5584, a trial and error method was simulated. The results of calculating the reliability of the body cover pump components before and after preventive maintenance based on the Weibull distribution are in accordance with the following table 13.

Table 13. Reliability of the body cover pump components before and after preventive maintenance

t (Jam Putar)	R(t)	n	t-nT	R(T)^n	R(t-nT)	Rm(t)
0	1.0000	0	0	1.0000	1.0000	1.0000
300	0.8855	0	300	1.0000	0.8855	0.8855
400	0.8369	0	400	1.0000	0.8369	0.8369
500	0.7873	0	500	1.0000	0.7873	0.7873
600	0.7375	0	600	1.0000	0.7375	0.7375
700	0.6883	0	700	1.0000	0.6883	0.6883
800	0.6404	0	800	1.0000	0.6404	0.6404
900	0.5940	0	900	1.0000	0.5940	0.5940
980	0.5582	1	0	1.0000	1.0000	1.0000
1000	0.5494	1	20.0	1.0000	0.9822	0.9822
1100	0.5069	1	120.0	1.0000	0.8977	0.8977
1200	0.4665	1	220.0	1.0000	0.8205	0.8205
1300	0.4284	1	320.0	1.0000	0.7500	0.7500
1343.3	0.4126	1	363.3	1.0000	0.7213	0.7213
1400	0.3925	1	420.0	1.0000	0.6855	0.6855
1500	0.3589	1	520.0	1.0000	0.6265	0.6265
1600	0.3276	1	620.0	1.0000	0.5727	0.5727
1700	0.2984	1	720.0	1.0000	0.5234	0.5234
1800	0.2713	1	820.0	1.0000	0.4784	0.4784

Graph of reliability comparison before and after preventive maintenance at interval t = 1290 as shown in the following figure

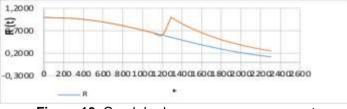


Figure 10. Graph body cover pump component

Following are the results of calculating the reliability of the alls components before and after

preventive maintenance based on the Weibull distribution according to table 14.

Table 14. Recapitulation reliability							
Component	Before Preventive Maintenance	After Preventive Maintenance	Increasing Reliability	Time Interval	Preventive Maintenance		
Body Cover Pump	0.4126	0.7213	30.87 %	980			
Impeller	0.4653	0.7973	33,20 %	1290	Inspection		
Cooler Tube	0.3290	0.5896	26.06 %	979			
Mechanical Seal	0.4986	0.8565	35.79 %	1581	Component		
Rechtangular Seal	0.4367	0.7534	31.67 %	859	change		

Table 14. Recapitulation reliability

In its application, preventive maintenance requires a fee called preventive cost, this cost arises because of maintenance on machines that have been adjusted to a set schedule. The preventive costs that arise will be compared with the costs without preventive maintenance which are called failure costs where these costs are a consequence of unexpected damage which causes the machine to stop during operation. Based on the calculation of the total cost of preventive maintenance, it can be estimated that maintenance cost savings when using preventive maintenance. The results of the calculation of maintenance cost savings for each critical component are as follows

Table 15.	Recapitulation Total Cost
-----------	---------------------------

Component	Before Preventive Maintenance	After Preventive Maintenance	Cost Saving					
	Tc/Jam	Tc/Jam						
Body Cover Pump	Rp 6.236,-	Rp 5.327,-	14,57%					
Impeller	Rp 13.719	Rp 9.702,-	29,28%					
Cooler Tube	Rp 23.800,-	Rp 19.895,-	16,40%					
Mechanical Seal	Rp 6.164,-	Rp 4.773,-	22,57%					
Rechtangular Seal	Rp 2.204,-	Rp 1.347,-	38,88%					

4. CONCLUSION

The results of the analysis using the FTA method cause the failure of the diesel generator to be caused by one of the failure factors in the supporting sub-systems, both from the electrical sub-system, fuel sub-system, air sub-system, fresh water sub-system, seawater sub-system, the lubricant sub-system and the control sub-system were damaged. Calculation using FMECA, there are five critical components based on the RPN value with a "high" risk rating, namely the Body Cover Pump component with the risk of corrosion (205), the Impeller component with the risk of corrosion/cracking (260.5), the Cooler tube component with the risk of leakage (264,7), Mechanical Seal component with risk of damage/leak (192.8), Rectanguler Seal component with risk of leak (196). With a reliability approach and analysis of total cost replacement age preventive maintenance with a minimum reliability limit of 55.84%. It can be proposed maintenance intervals for Body Cover Pump components at 980

running hours with an increase in reliability of 30.87% and maintenance cost savings reaching 14.57%, Impeller components at 1581 running hours with an increase in reliability of 35.79% and maintenance cost savings reaching 29.28%, Cooler tube components at 979 running hours with an increase in reliability of 26.06% and maintenance cost savings reaching 16.40%, mechanical seal components at 1290 running hours with an increase in reliability of 33,20% and savings in maintenance costs reaching 22,57%, the rechtangular seal component on 979 running hours with an increase in reliability of 31.67% and savings in maintenance costs reaching 38.88%.

ACKNOWLEDGEMENT

The author is very grateful for the support of the Indonesian Navy, and also thanks to the STTAL Surabaya Indonesia Naval College of Technology for providing the necessary resources to carry out this research work. The authors also thank anonymous reviewers and the editorial board for their many insightful comments, which have enhanced this article significantly.

REFERENCES

- Alkaff, A. (1992). Reliability Technique System. Surabaya: Electronic engineering faculty, industrial engineering facultyi, ITS.
- ARMY, D. o. (2006). Failure Modes, Effect and Criticality Analysis (FMECA) For Command, Control, Communication, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) Facilities. Washington D.C
- B. J Camerling, D. B. (2020). The Effect of Crank System Maintenance Management on the Operation of the Belgian Type 12 V . Anglo Engine. Arika, 1-15.
- Blanchard, B. (2004). Logistics Engineering And Management (6th Edition. Virginia: Pearson Education International.
- Ebeling, C. E. (1997). An Introduction to Reliability and Maintainability. Singapore: Me Graw Hill Book Co.
- Govil, A. K. (1983). Reliability engineering. New Delhi: Tata McGraw-Hill
- Jardine, A. K., & Tsang, A. H. (2013). Maintenance, Replacement and Reliability. France: CRC Taylor & France Group
- Milje, R. (2011). Engineering methodology for selecting Condition Based . New York: University Of Stavanger
- O'Connor, &. P. (2002). Patrical Reliability Engineering ((Fourth Edition). John Wiley and Sons
- Patrick D.T. O'Connor, A. K. (2012). Practical Reliability Engineering Fifth Edition. West Sussex, United Kingdom: John Wiley & Son, Ltd
- Rausand, M. (2004). System Reliability Theory Models, Stastical Methods and Applications. France: Departemen Productique et Autamatique Nantes Cedex 3.
- Samlawi, & Kusairi, A. (2015). Diesel Engine Basic Engineering, Lambung Mangkurat University.
- Wang, Y.-M., Poon, K.-S., Gary ka Kwai, & Jian Bo, Y. (2009). Risk Evaluation in Failure Mode anf Effect Analysis Using Fuzzy Weighted Gemetric Mean. Expert Systems With Applications, 1195-1207.

Zafiropoulos, E., & Dialynas, E. (2005). Reliability Prediction anf Failure Mode Effecs and Criticaly Analysis of Electric Device Using Fuzzy Logic. Internatinal Journal Of Quality & Reliability Management, 183-200.