ANALYSIS OF MENTAL WORKLOAD WITH INTEGRATING NASA TLX AND FUZZY METHOD

Riono¹, Suparno², Adi Bandono³

^{1,3}Sekolah Tinggi Teknologi Angkatan Laut (STTAL), Morokrembangan, Surabaya 60187, Indonesia ²Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

ABSTRAK

In carrying out its main duty as a guardian of the territorial water sovereignty republic Indonesia, the strength of the Navy is directed as a strategic force developed under the SSAT. The strength of the Navy can be measured by the arsenal and the quality of the personnel who are responsible for it. The performance, quality of personnel is strongly influenced by the work load it receives. Measurement of personnel workload in Indonesian Warship to determine the class of his current position using the Factor Evaluation System (FES) method that is more oriented on the volume of work and work time. While the mental workload has not been accommodated in the measurement of workload using this method. In this research will carry out the measurement of mental workload of Indonesian Warship personnel for each type of work when the Indonesian Warship operates, using the NASA TLX method integrated with the Fuzzy method. The questionnaire data collection was obtained from 82 respondents Indonesian Warship personnel. From the research results obtained data that of 11 (eleven) types of work in Indonesian Warship at the time of operation, Main Engine Operators work is the work that has the highest mental workload with a value of 74.33. While the type of work that most low-level mental work is to electronics Operators with a value of 58.83.

Keywords: Workload, NASA TLX, FUZZY Method, FES.

1. INTRODUCTION.

In carrying out its main duty as a guardian of the sovereignty of the State of republic Indonesia, the strength of the Navy is directed as a strategic force developed under the SSAT. The strength of the navy can be measured by the arsenal and the quality of the personnel that it carries. The performance, quality of personnel is strongly influenced by the work load it receives. The current condition, the measurement of personnel workload using the Factor Evaluation System (FES) method is more concerned with the physical workload. While the mental workload has not been accommodated in the measurement of workload using this method. From this measurement is used to determine the job class of each job. The mental workload of personnel serving in the Indonesian Warship needs to be considered, since an assessment of the mental workload is an important aspect in the design and evaluation of tasks at work (Didomenico & A. Nussbaum, 2011). The work load has an influence on job stress, which will further cause the decrease of performance of the employee (Ali, et al., 2014). The mental workload of Indonesian Warship personnel at the time of sailing must be observed, so as not to cause the excessive mental work load because work at the time of Indonesian Warship sail has a high accident risk.

The purpose of this study is to determine the mental workload of Indonesian Warship soldiers for each type of work at the time of Indonesian Warship carry out the operation. The method used in this research is by a NASA TLX method that integrated with Fuzzy.

This research refers to the literature of journals and books, among others are Impact of Stress on Job Performance: An Empirical Study of the Employees of Private Sector Universities of Karachi (Ali, et al., 2014), Fuzzy TLX: using fuzzy integrals for evaluating human mental workload with NASA-Task Load index in laboratory and field studies (Amady, et al., 2013), A Survey on Analysis and Classification of Workload in Cloud (Chethan, et al., 2016), Effects of different physical workload parameters on mental workload and performance (Didomenico & A. Nussbaum, 2011), The effect of performance failure and task demand on the perception of mental workload (Hancock, 1989), Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research (Hart & Staveland, 1988), Comparison of Four Subjective Workload Rating Scales (Hill, et al., 1992), Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods (Rubio, et al., 2004), The Impact of Job Satisfaction, Job Attitude and Equity on Employee Performance (Inuwa, 2015), Influence of Mental Workload on Job Performance (Omolayo & Omole, 2013), Human Factors in Engineering and Design Seventh Edition (Sanders & McCormick, 1993), Impact of Workload and Job Complexity on Employee Job Performance with the Moderating Role of Social Support and Mediating Role of Job Stress (Shabbir & Naqvi, 2017), Workload and Performance of Employees (Shah, et al., 2011), Using NASA-TLX to evaluate the flight deck design in Design Phase of Aircraft (Yiyuan, et al., 2011), Fuzzy Logic and Approximate Reasoning (Zadeh, 1975), Operations in a Fuzzy-Valued Logic (Dubois, 1979), Fuzzy Logic with Engineering Applications Third Edition (Ross, 2010).

From the results of this study can be used to determine policies in the guidance of personnel, that is by arranging the shif time of the duty on the sea based on the mental workload on each job, so as to improve the performance and reduce the job risk of each soldier. This research is assumed at the time of Indonesian Warship perform operation (sail).

2. MATERIAL AND METHODOLOGY.

1. Workload

Workload is one of the main factors to achieve high performance (Chethan, et al., 2016). Workload can be divided into two categories: physical workload and mental workload. and based on the condition, the workload is divided into 3 conditions, namely workload according to standard, over capacity and under workload. Assessment of the mental workload is an important aspect in the design and evaluation of work tasks (Didomenico & A. Nussbaum, 2011). Mental work load can be the extent to which level of expertise and work performance possessed by a person (Sanders & McCormick, 1993). The measurement of the mental workload can be subjectively performed using the Modified Cooper Harper Scale (MCH) method, Bedford Scale, NASA-Task Load Index (NASA-TLX), Workload Assessment Technique (SWAT), Workload Assessment instrument (Workload Profile) (Rubio, et al., 2004).

2. NASA-TLX (NASA - Task Load Index)

The NASA-TLX method was developed by Sandra G. Hart of NASA -Ames Research Center and Lowell E. Staveland from San Jose State University in 1981. Nasa TLX uses 6 (six) dimensions to assess the workload of mental needs, physical needs. requirements, time frustration level, performance and business level ((Hart & Staveland, 1988). From each size of the workload, there is a scale that will be filled by the respondent. Scale measurements on each indicator are described in Table 1 Scale and Dimension of NASA-TLX.

Table 1. Scale	and Dimension	of NASA-TLX
----------------	---------------	-------------

No	Indicator / Dimension	scale	Description
1	Mental Demand (MD)	Low / high	How much mental and perceptual activity is required to see, remember and seek. Whether the job is easy or difficult, simple or complex, loose or tight.
2	Physical Demand (PD)	Low / high	The amount of physical activity required (examples of running, drawing, etc.)
3	Temporal Demand (TD)	Low / high	The amount of pressure associated with the time that is felt during the work element takes place. Do the work slowly, relax or fast and tiring.
4	Performance (P)	Poor / Good	How much success a person in his job and how satisfied with the results of his work
5	Frustation (FR)	Low / high	How insecure, hopeless, offended, distracted compared to feelings of security, satisfaction, comfort and perceived self-satisfaction
6	Effort (EF)	Low / high	How hard mental and physical work is required to get things done

The steps of the NASA-TLX method are as follows:

a. Calculate product value

Product = Rating x Weight Factor (1)

b. Calculates the value of Weighted Workload (WWL)

 $WWL = \sum Produk \dots \dots \dots \dots (2)$

c. Calculate the average of WWL

Average WWL = WWL / 15(3)

From the average value of the WWL will be known the value of a worker's workload and in which category the workload. The category of workload is classified into 5 (five) categories, as shown in Table 2 Mental Workload Category.

Table 2. Mental Workload Categories

No	Average WWL Value Range	Category of Workload
1	0 - 20	Very low
2	21 - 40	Low

3	41 - 59	Medium
4	60 - 79	high
5	80 - 100	very High

3. Fuzzy Logic

Fuzzy logic is a method that has the ability to process variables that are blurred or biased and can't be described with certainty (Zadeh, 1975). In fuzzy logic, variables that are blur are represented as a set whose members are a value of crips and its membership degrees in the set. In the Fuzzyfication stage is done to change the inputs of true value of truth (input crips) into the form of fuzzy input (Ross, 2010). A Triangular Fuzzy Number is denoted as M = (a, b, c) where a<b<c, is a special fuzzy number and has a triangular membership function as follows (Zadeh, 1975).

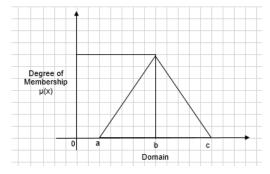
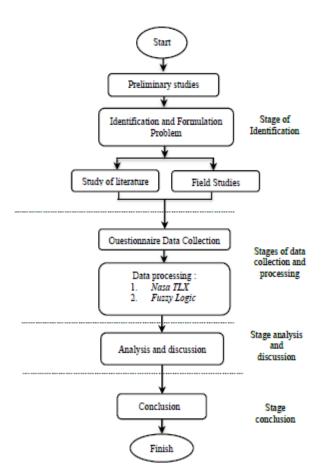


Fig. 1 Function of the Triangle Curve (Source: Zadeh, 1975)


$$\mu(x) \begin{bmatrix} 0, & \text{if } x < a \\ (x-a) / (b-a), \text{ if } a < x \le b \\ & \dots & (4) \\ (c-x) / (c-b), \text{ if } b < x \le c \\ & \text{if } x > c \end{bmatrix}$$

(Source: Zadeh, 1975)

The next step is defuzzyfication. This stage is a calculation to obtain output crips. (Ross, 2010). There are several methods of defuzzyfication such as Maximum Membership Principle, Centroid Method or Center of Gravity (COG) method, Average Weighted Method and Method of Membership Mean.

4. Methodology of Research

The research designs are outlined in the research flow diagrams shown in Figure 2.2 Flow Chart of Research.

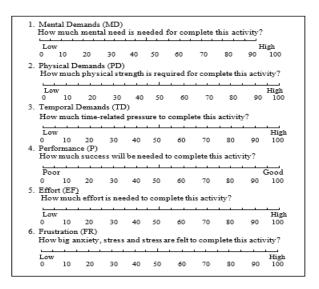


Fig. 2 Flow Chart of Research

In this stage, starting from preliminary study, problem identification, litertur and field study, designing Nasa TLX questionnaire, distributing questionnaires to respondents, data processing, data analysis, conclusion and suggestion. The Nasa TLX questionnaire consisted of 2 types: Questionnaires for weighting (Table 3. Weighted Questionnaire) and ranking questionnaires (Fig. 3. Rating Questionnaire).

Table 3. Weighted Questionnaire

No	M	ental Load	1 Indicator
1	MD (Mental Demand)	VS	PD (Physical Demand)
2	MD (Mental Demand)	VS	TD (Temporal Demand)
3	MD (Mental Demand)	VS	P (Performance)
4	MD (Mental Demand)	VS	EF (Effort)
5	MD (Mental Demand)	VS	FR (Frustration)
6	PD (Physical Demand)	VS	TD (Temporal Demand)
7	PD (Physical Demand)	VS	P (Performance)
8	PD (Physical Demand)	VS	EF (Effort)
9	PD (Physical Demand)	VS	FR (Frustration)
10	TD (Temporal Demand)	VS	P (Performance)
11	TD (Temporal Demand)	VS	EF (Effort)
12	TD (Temporal Demand)	VS	FR (Frustration)
13	P (Performance)	VS	EF (Effort)
14	P (Performance)	VS	FR (Frustration)
15	EF (Effort)	VS	FR (Frustration)

Fig. 3 Rating Questionnaire

The data was collected at INDONESIAN WARSHIP with 82 respondents. The type of nautical journey work each Department in INDONESIAN WARSHIP as shown in Table 4. Job Types of Crew

After obtaining the questionnaire from all respondents, the next step is to calculate the result of the rating and the result of weight ratio. Where the number of ratings per point multiplied by the amount of weight generated by weighting NASA TLX at each point called Weighted Workload (WWL), then from the multiplication of the rating and weight of each indicator summed and divided by Divided Constant of 15 (number of comparison, it will get Average Weighted Workload (AVG WWL) or average Workload.

The results of the questionnaire for the Weighted Value of each department are shown in Table 5. NASA TLX Weighting. While the results of the mental workload rating questionnaire and the results of Average Weighted Workload (AVG WWL) scores are shown in Table 6. NASA TLX Questionnaire Recapitulation.

Table 4. Job Types of Crew

Department	Job type	Respondents	
	Quartermaster	8	
	Communication specialist	8	
Operations Department	Throttle Operators	8	
	Radar operators	8	
	Navigator	8	
	Main Engine Operators	6	
Engine Department	Generator Engine	6	
Engine Department	Operators	0	
	Electrician Operators	6	
Electronics Department	Electronic Operators	8	
Locistics Department	Ship Chef	8	
Logistics Department	Pantryman	8	

Table 5. NASA TLX Weighting

	Operations Department	Engine Department	Electronic Department	Logistics Department
Mental Demand (MD)	5	4	4	2
Physical Demand (PD)	1	2	1	3
Temporal Demand (TD)	2	1	2	2
Performance (P)	3	4	2	5
Effort (EF)	1	1	4	1
Frustration (FR)	3	3	2	2
Total	15	15	15	15

Operation			we	ight /	Rati	ng		Product Value						WWL	DC	Averag
Department	Resp	MD 5	PD 1	TD 2	P 3	EF 1	FR 3	MD	PD	TD	P	EF	FR			WWL
	1	80	60	70	60	70	70	400	60	140	180	70	210	1060	15	70.67
	2	70	70	70	70	70	80	350	70	140	210	70	240	1080	15	72.00
	3	80	70	60	70	60	70	400	70	120	210	60	210	1070	15	71.33
	4	80	80	60	70	70	60	400	80	120	210	70	180	1060	15	70.67
Quartermaster	5	70	70	80	70	80	70	350	70	160	210	80	210	1080	15	72.00
	6	80	70	80	80	80	60	400	70	160	240	80	180	1130	15	75.33
	7	80	70	80	70	80	60	400	70	160	210	80	180	1100	15	73.33
	8	70	80	70	70	70	80	350	80	140	210	70	240	1090	15	72.67
	1	60	70	50	70	80	40	300	70	100	210	80	120	880	15	58.67
	2	60	60	50	40	40	70	300	60	100	120	40	210	830	15	55.33
	3	40	50	50	40	50	70	200	50	100	120	50	210	730	15	48.67
Communication	4	60	80	60	70	80	50	300	80	120	210	80	150	940	15	62.67
Specialist	5	80	90	70	80	80	10	400	90	140	240	80	30	980	15	65.33
	6	50	50	60	50	40	40	250	50	120	150	40	120	730	15	48.67
	7	50	50	60	60	60	50	250	50	120	180	60	150	810	15	54.00
	8	60	80	70	90	50	70	300	80	140	270	50	210	1050	15	70.00
	1	60	80	60	70	70	60	300	80	120	210	70	180	960	15	64.00
	2	70	60	80	60	70	60	350	60	160	180	70	180	1000	15	66.67
	3	50	50	50	70	50	50	250	50	100	210	50	150	810	15	54.00
Throttle	4	50	50	50	70	70	60	250	50	100	210	70	180	860	15	57.33
Operators	5	70	60	60	50	70	60	350	60	120	150	70	180	930	15	62.00
1	6	60	60	60	50	70	70	300	60	120	150	70	210	910	15	60.67
	7	70	60	50	40	40	60	350	60	100	120	40	180	850	15	56.67
	8	50	50	40	60	70	70	250	50	80	180	70	210	840	15	56.00
	1	80	50	60	80	60	80	400	50	120	240	60	240	1110	15	74.00
	2	70	50	60	80	50	70	350	50	120	240	50	210	1020	15	68.00
	3	80	60	60	70	60	70	400	60	120	210	60	210	1060	15	70.67
Radar	4	60	70	50	60	50	80	300	70	100	180	50	240	940	15	62.67
operators	5	60	60	80	60	70	70	300	60	160	180	70	210	980	15	65.33
1	6	70	60	50	80	70	70	350	60	100	240	70	210	1030	15	68.67
	7	70	60	60	70	70	60	350	60	120	210	70	180	990	15	66.00
	8	80	70	60	80	70	70	400	70	120	240	70	210	1110	15	74.00
	1	80	60	60	70	70	80	400	60	120	210	70	240	1100	15	73.33
	2	80	70	80	80	90	60	400	70	160	240	90	180	1140	15	76.00
	3	70	60	80	50	70	80	350	60	160	150	70	240	1030	15	68.67
	4	80	90	80	70	80	80	400	90	160	210	80	240	1180	15	78.67
Navigator	5	80	90	70	80	80	60	400	90	140	240	80	180	1130	15	75.33
	6	80	60	50	70	60	80	400	60	100	210	60	240	1070	15	71.33
	7	70	60	70	70	70	70	350	60	140	210	70	210	1040	15	69.33
	8	90	60	80	50	70	60	450	60	160	150	70	180	1070	15	71.33

Engine			we	ight /	Rati	ıg			P	roduc			Average			
Department	Resp	MD 4	PD 2	TD 1	Р 4	EF 1	FR 3	MD	PD	TD	Р	EF	FR	WWL	DC	WWL
	1	80	60	60	70	70	80	320	120	60	280	70	240	1090	15	72.67
Main	2	80	70	80	80	90	60	320	140	80	320	90	180	1130	15	75.33
Engine	3	70	60	80	70	70	80	280	120	80	280	70	240	1070	15	71.33
Operators	4	80	90	80	70	80	80	320	180	80	280	80	240	1180	15	78.67
1	5	80	90	70	80	80	60	320	180	70	320	80	180	1150	15	76.67
	6	80	60	50	70	60	80	320	120	50	280	60	240	1070	15	71.33
	1	70	70	80	70	80	60	280	140	80	280	80	180	1040	15	69.33
Generator	2	60	70	70	70	70	60	240	140	70	280	70	180	980	15	65.33
Engine	3	70	70	70	60	80	60	280	140	70	240	80	180	990	15	66.00
Operators	4	70	70	50	60	70	70	280	140	50	240	70	210	990	15	66.00
-1	5	80	60	50	60	60	80	320	120	50	240	60	240	1030	15	68.67
	6	70	70	70	70	70	50	280	140	70	280	70	150	990	15	66.00
	1	60	70	50	70	80	40	240	140	50	280	80	120	910	15	60.67
	2	60	60	50	40	60	70	240	120	50	160	60	210	840	15	56.00
Electrician	3	70	50	50	40	50	70	280	100	50	160	50	210	850	15	56.67
Operators	4	60	80	60	70	80	50	240	160	60	280	80	150	970	15	64.67
operators	5	70	70	70	50	60	60	280	140	70	200	60	180	930	15	62.00
	6	60	50	60	50	40	60	240	100	60	200	40	180	820	15	54.67
T1		100	DD	TD	D	TT	TD					_				
Electronic	Resp	MD	PD	TD	P	EF	FR	MD	PD	TD	Р	EF	FR	WWL	DC	Average
Department	•	4	1	2	2	4	2	• • •	•			••••				WWL
	1	60	50	50	60	50	60	240	50	100	120	200	120	830	15	55.33
	2	50	60	60	50	50	60	200	60	120	100	200	120	800	15	53.33
-1	3	50	50	60	60	60	60	200	50	120	120	240	120	850	15	56.67
Electronic	4	50	60	60	70	50	70	200	60	120	140	200	140	860	15	57.33
Operators	5	60	70	70	80	60	70	240	70	140	160	240	140	990	15	66.00
	6	60	70	50	60	70	70	240	70	100	120	280	140	950	15	63.33
	7	50	50	50	60	60	70	200	50	100	120	240	140	850	15	56.67
	8	60	70	70	70	60	50	240	70	140	140	240	100	930	15	62.00
Logistic	Resp	MD	PD	TD	Р	EF	FR	MD	PD	TD	P	EF	FR	WWL	DC	Averag WWL
Department		4	1	2	2	4	2									
	1	60	50	50	60	50	60	240	50	100	120	200	120	830	15	55.33
	2	50 50	60 50	60 60	50 60	50	60	200	60 50	120	100	200	120	800	15	53.33
	3	50 50	50 60	60 60	60 70	60 50	60 70	200	50 60	120 120	120 140	240 200	120 140	850 860	15 15	56.67 57.33
Pantryman	- + 5	60	70	70	80	60	70	200	70	140	140	200	140	990	15	66.00
	6	60	70	50	60	70	70	240	70	100	120	280	140	950	15	63.33
	7	50	50	50	60	60	70	200	50	100	120	240	140	850	15	56.67
	8	60	70	70	70	60	50	240	70	140	140	240	100	930	15	62.00
	1	40	70	70	60	80	60	160	70	140	120	320	120	930	15	62.00
	2	70 60	70 50	60 50	50 50	70 80	60 50	280 240	70 50	120 100	100 100	280 320	120 100	970 910	15 15	64.67 60.67
	4	50	30 90	50 60	30 80	80 90	50	240	30 90	100	160	360	100	1030	15	68.67
Ship Chef	5	60	70	40	80	70	50	200	70	80	160	280	100	930	15	62.00
	6	50	80	60	50	70	70	200	80	120	100	280	140	920	15	61.33
	7	60	80	70	50	80	80	240	80	140	100	320	160	1040	15	69.33
	8	50	70	70	80	80	50	200	70	140	160	320	100	990	15	66.00

After the results obtained from the processing of mental workload data, then processed by Fuzzy method. This is done because of the uncertainty of the workload value of personnel performing the same task. In this method there are two stages, namely fuzzyfication and defuzzyfication.

a. Fuzzyfication

At this stage the input crips are first determined. The requirement to convert input ciphers into fuzzy inputs is to determine the membership function for each input. The average WWL value of the questionnaire data processing is used as the Input Crips Value. To determine membership function, use triangle curve function. As shown in Figure 3 Triangle curve.

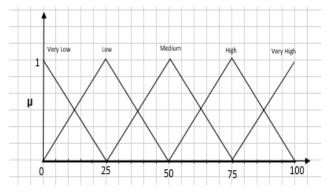


Fig. 3 Triangle curve

For example, the Quartermaster of respondent 1 has the value of mental workload (average WWL) of 70.67. This value as input crips from the mental workload of the respondent's Quartermaster 1. This value is in the linguistic value of "medium" and "high". As shown in Figure 4. Crips Input of Helmsman 1.

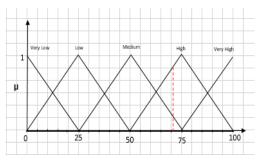


Fig. 5 Crips Input of Quartermaster 1

For the Quartermaster job (1), on a high linguistic scale, the location of 70.67 is at $a \le x \le b$, where "x" is a value of 70.67, "b" is a value of 75, and "a" is the mean of medium linguistic scale of 50. So the degree of membership of the Quartermaster (1) for high linguistic scale is as follows:

$$\mu A = \frac{(x-a)}{(b-a)}$$

$$\mu A = \frac{(70,67-50)}{(75-50)}$$
$$\mu A = 0,83$$

While for medium linguistic scale, the location of 70,67 is at $b \le x \le c$, where "x" is 70,67, "c" is 75, and "b" is the mean value of medium linguistic scale 50. So the degree of membership of the Quartermaster (1) for high linguistic scale is as follows:

$$\mu A = \frac{(c-x)}{(c-b)}$$
$$\mu A = \frac{(75 - 70,67)}{(75 - 50)}$$

 $\mu A = 0,21$

The full results of the fuzzyfication calculations for each job are shown in Table 3.4 Fuzzyfication.

b. Defuzzyfication

After implemented fuzzyfikasi, the next step is Defuzzyfikasi the stages change the value of fuzzy into output crips. The method used is the method of Center Of Gravity (COG). The defuzzyfication calculations on the Quartermaster's work are as follows:

$$COG = \frac{\sum x.\mu(A)}{\sum \mu(A)}$$

= $\frac{(70,67 \times 0.17) + (70,67 \times 0.83) + \dots + (72,67 \times 0.91)}{(0,17+0,83+0,12+\dots+0.91)}$
= $\frac{578}{8}$ = 72,25

In the same way for each job, a defuzzyfication result is obtained as shown in Table 7. Defuzzyfication.

Department	Job Types	Result of Defuzzyfikasi
	Quartermaster	72,25
Operations	Communication specialist	59,67
Operations Department	Throttle Operators	59,67
Department	Radar operators	68,67
	Navigator	73,00
Engine	Main Engine Operators	74,33
Engine Department	Generator Engine Operators	66,89
•	Electrician Operators	59,11
Electronics Department	Electronic Operators	58,83
Logistics	Ship Chef	64,33
Department	Pantryman	58,92

Table 7. Defuzzyfication

Table 8. Fuzzyfication

			-		·,		•••		
No	Job	Linguistic	X	μA	No	Job	Linguistic	X	μA
	Types	Scale				Types	Scale		
1	Quartermaster	Medium	70.67	0.17	17	Throttle	Medium	64.00	0.44
	1	High	70.67	0.83	_	Operators 1	High	64.00	0.56
2	Quartermaster	Medium	72.00	0.12	18	Throttle	Medium	66.67	0.33
-	2	High	72.00	0.88		Operators 2	High	66.67	0.67
3	Quartermaster	Medium	71.33	0.15	19	Throttle	Medium	54.00	0.84
1	3	High	71.33	0.85	"	Operators 3	High	54.00	0.16
4	Quartermaster	Medium	70.67	0.17	20	Throttle	Medium	57.33	0.71
7	4	High	70.67	0.83	20	Operators 4	High	57.33	0.29
5	Quartermaster	Medium	72.00	0.12	21	Throttle	Medium	62.00	0.52
)	5	High	72.00	0.88	21	Operators 5	High	62.00	0.48
6	Quartermaster	High	75.33	0.99	22	Throttle	Medium	60.67	0.57
0	6	Very High	75.33	0.01	22	Operators 6	High	60.67	0.43
1	Quartermaster	Medium	73.33	0.07	23	Throttle	Medium	56.67	0.73
1	7	High	73.33	0.93	23	Operators 7	High	56.67	0.27
	Quartermaster	Medium	72.67	0.09		Throttle	Medium	56.00	0.76
8	8	High	72.67	0.91	24	Operators 8	High	56.00	0.24
9	Comunication	Medium	58.67	0.65	25	Radar	Medium	74.00	0.04
y	Specialist 1	High	58.67	0.35	20	Operators 1	High	74.00	0.96
10	Comunication	Medium	56.67	0.73	~	Radar	Medium	68.00	0.28
10	Specialist 2	High	56.67	0.27	26	Operators 2	High	68.00	0.72
,,	Comunication	Medium	58.67	0.65	47	Radar	Medium	70.67	0.17
11	Specialist 3	High	58.67	0.35	27	Operators 3	High	70.67	0.83
	Comunication	Medium	62.67	0.49		Radar	Medium	62.67	0.49
12	Specialist 4	High	62.67	0.51	28	Operators 4	High	62.67	0.51
	Comunication	Medium	63.33	0.47		Radar	Medium	65.33	0.39
13	Specialist 5	High	63.33	0.53	29	Operators 5	High	65.33	0.61
	Comunication	Medium	56.00	0.76		Radar	Medium	68.67	0.25
14	Specialist 6	High	56.00	0.24	30	Operators 6	High	68.67	0.75
	Comunication	Medium	57.33	0.71	H	Radar	Medium	66.00	0.36
15	Specialist 7	High	57.33	0.29	31	Operators 7	High	66.00	0.64
17	Comunication	Medium	64.00	0.44	20	Radar	Medium	74.00	0.04
16	Specialist 8	High	64.00	0.56	32	Operators 8	High	74.00	0.96

No	Job Turnor	Linguistic Scale	X	μA		No	Job Types	Linguistic Scale	X	μA
\vdash	Types	Medium	73.33	0.07			Electrician	Medium	54.67	0.81
33	Navigator 1	High	73.33	0.07		58	Operator 6	High	54.67	0.01
\vdash		High	76.00	0.95			Electronic	Medium	55.33	0.19
34	Navigator 2	-	76.00	0.90		59			55.33	
\vdash		Very High					Operator 1	High		0.21
35	Navigator 3	Medium	68.67	0.25		60	Electronic	Medium	53.33	
		High	68.67	0.75		-	Operator 2	High	53.33	0.13
36	Navigator 4	High	78.67	0.85		61	Electronic	Medium	56.67	0.73
	-	Very High	78.67	0.15			Operator 3	High	56.67	0.27
37	Navigator 5	High	75.33	0.99		62	Electronic	Medium	57.33	0.71
	-	Very High	75.33	0.01			Operator 4	High	57.33	0.29
38	Navigator 6	Medium	71.33	0.15		63	Electronic	Medium	66.00	0.36
		High	71.33	0.85			Operator 5	High	66.00	0.64
39	Navigator 7	Medium	69.33	0.23		64	Electronic	Medium	63.33	0.47
"	Havigator /	High	69.33	0.77		· ·	Operator 6	High	63.33	0.53
40	Navigator 8	Medium	71.33	0.15		65	Electronic	Medium	56.67	0.73
V	Travigator o	High	71.33	0.85		<i>•</i>	Operator 7	High	56.67	0.27
41	Main Engine	Medium	72.67	0.09		66	Electronic	Medium	62.00	0.52
41	Operators 1	High	72.67	0.91		00	Operator 8	High	62.00	0.48
42	Main Engine	High	75.33	0.99		67	Ship Chef l	Medium	62.00	0.52
42	Operators 2	Very High	75.33	0.01		0/	Sup Cher I	High	62.00	0.48
43	Main Engine	Medium	71.33	0.15]	68	Shin Chat 2	Medium	64.67	0.41
4)	Operators 3	High	71.33	0.85		00	Ship Chef 2	High	64.67	0.59
44	Main Engine	High	78.67	0.85		69	Ship Chef 3	Medium	60.67	0.57
**	Operators 4	Very High	78.67	0.15		07		High	60.67	0.43
45	Main Engine	High	76.67	0.93]	70	01-01-04	Medium	68.67	0.25
4)	Operators 5	Very High	76.67	0.07		10	Ship Chef 4	High	68.67	0.75
46	Main Engine	Medium	71.33	0.15		71	Ship Chef 5	Medium	62.00	0.52
70	Operators 6	High	71.33	0.85	Į		Sup ouer 5	High	62.00	0.48
47	Gen Engine	Medium	69.33	0.23		72	Ship Chef 6	Medium	61.33	0.55
"	Operators 1	High	69.33	0.77		12	Sup cher o	High	61.33	0.45
48	Gen Engine	Medium	65.33	0.39		73	Ship Chef 7	Medium	69.33	0.23
40	Operators 2	High	65.33	0.61	1	13	Sup Cher /	High	69.33	0.77
49	Gen Engine	Medium	66.00	0.36		74	Chie Chatte	Medium	66.00	0.36
49	Operators 3	High	66.00	0.64		/4	Ship Chef 8	High	66.00	0.64
50	Gen Engine	Medium	66.00	0.36		75	D	Medium	56.67	0.73
50	Operators 4	High	66.00	0.64		75	Pantryman l	High	56.67	0.27
51	Gen Engine	Medium	68.67	0.25		76	Dankanan 1	Medium	57.33	0.71
1	Operators 5	High	68.67	0.75		/0	Pantryman 2	High	57.33	0.29
52	Gen Engine	Medium	66.00	0.36		77	Pantryman 3	Medium	64.67	0.41
14	Operators 6	High	66.00	0.64		"	r and ymail 3	High	64.67	0.59
53	Electrician	Medium	60.67	0.57		78	Pantryman 4	Medium	57.33	0.71
"	Operator 1	High	60.67	0.43		10	r and ymail 4	High	57.33	0.29
54	Electrician	Medium	56.00	0.76		79	Pantryman 5	Medium	56.67	0.73
1	Operator 2	High	56.00	0.24		/7	, and Aman 2	High	56.67	0.27
55	Electrician	Medium	56.67	0.73		80	Pantryman 6	Medium	63.33	0.47
"	Operator 3	High	56.67	0.27		Ľ		High	63.33	0.53
56	Electrician	Medium	64.67	0.41		81 Pantry	Pantryman 7	Medium	54.00	0.84
"	Operator 4	High	64.67	0.59		or ranuyman /		High	54.00	0.16
57	Electrician	Medium	62.00	0.52		82	Pantryman 8	Medium	61.33	0.55
	Operator 5	High	62.00	0.48			-,	High	61.33	0.45

2. DISCUSSION.

The mental workload perceived by each person varies even in the same type of work, because the assessors are based on their respective perceptions. But the difference is in a relatively small range. Mental work load on the job of the Quartermaster with the respondent as many as 8 people have work load with the range between 70.67 up to 75,33. At the Communication specialist with 8 respondents, the workload received by personnel in the range between 56 to 64. The Throttle Operators with 8 respondents, workload received by personnel in the range of 54 to 66,66. At the work of Radar operators with 8 respondents, the workload received by personnel in the range of 54 to 66.66. In Navigator work with 8 respondents, the workload received by personnel is in the range of 68,66 to 78,66. In the Main Engine Operators work with 6 respondents, the workload received by personnel in the range between 71,33 to 78,66. On Engine Operators work with 6 Generator respondents, the workload received by personnel is in the range of 65,33 to 69,33. In Electrician operator work with 6 respondents, the workload received by the personnel is in the range between 54,66 and 64,66. In electronic operators work with 8 respondents, the workload received by the personnel is in the range of 53,33 up to 66, On the Ship chef with 8 respondents, the workload received by the personnel is in the range between 60,66 to 69,33, On the Pantryman work with 8 respondents, the workload received by personnel is in the range of 54 to 64,66.

Of the 11 (eleven) types of work in the Indonesian Warship at the time of the sail, have a mental workload in the medium and high category. Jobs that fall into the moderate category are the Throttle Operators, Electrician Operators, Electronic Operators and Pantryman. For work that has the lowest mental workload value is a Electronic Operators with a value of 58,83. While the type of work included in the category of high workload is the Quartermaster, Radar operators, Navigator, Main Engine Operators, Generator Engine Operators and Ship Chef. Main Engine Operators is the work that has the highest mental workload with a value of 74,33, while the Electronic Operators is the job that has the lowest workload with a value of 58,83.

3. CONCLUSION.

From the results of this study it is known that the type of work in the Indonesian Warship at the time of operation (sail) which has the highest mental workload is the Main Engine Operators with a work load value of 74,43, while the type of work is the lowest mental workload is to keep Electronic Operators with work load value of 58,83. So to keep the performance of the organization remains good, then this mental workload needs to be considered in order not to happen excessive workload for personnel.

4. BIBLIOGRAPHY.

Ali, W. U., Raheem, A. R., Nawaz, A., & Imamuddin, K. (2014). Impact of Stress on Job Performance: An Empirical study of the Employees of Private Sector Universities of Karachi, Pakistan. *Research Journal of Management Sciences, 3*(7), 14-17.

Amady, M. M., Raufasteb, E., Pradec, H., & Meyera, J. P. (2013). Fuzzy-TLX: using fuzzy integrals for evaluating human mental workload with NASA-Task Load indeX in laboratory and field studies. *Ergonomics Journal*, 752-763.

Chethan, Pushpalatha, & Boraiah, R. (2016). A Survey on Analysis and Classification of Workload in Cloud . *International Journal of Recent Trends in Enginering & Research*, 182-189. Didomenico, A., & A. Nussbaum, M. (2011). Effects of different physical workload parameters on mental workload and performance. *International Journal Of Industrial Ergonomics, 41*(3), 255-260.

Dubois, D. (1979). Operations in a Fuzzy-Valued Logic. *Information and Control, 43*, 224-240.

Hancock, P. (1989). The effect of performance failure and task demand on the perception of mental workload . *Applied Ergonomics, 20*(3), 197-205.

Hart, S. G., & Staveland, L. E. (1988). Development of NASA_TLX (Task Load Index): Results of Empirical and Theoretical Research. *Advances in Psychology*, 139-183.

Hill, S. G., lavecchia, H. P., Alvah C. Bittner, J., Zaklad, A. L., & Christ, R. E. (1992). Comparison of Four Subjective Workload Rating Scales. *The Journal of the Human Factors and Ergonomics Society*, 429-439.

Inuwa, M. (2015). The Impact of Job Satisfaction, Job Attitude and Equity on Employee Performance . *The International Journal Of Business & Management , 3*(5), 288-293.

Omolayo, B. O., & Omole, O. C. (2013). Influence of Mental Workload on Job Performance . *International Journal of Humanities and Social Science*, 3, 238-246.

Ross, T. J. (2010). *Fuzzy Logic with Engineering Applications Third Edition.* Chichester: John Wiley & Sons, Ltd. Rubio, S., Díaz, E., & Martín, J. (2004). Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods. *Applied Psychology : An International Review, 53*, 61-86.

Sanders, M. S., & McCormick, E. J. (1993). *Human Factors in Engineering and Design Seventh Edition.* New York: McGraw-Hili, Inc.

Shabbir, B., & Naqvi, R. (2017). Impact of Workload and Job Complexity on Employee Job Performance with the Moderating Role of Social Support and Mediating Role of Job Stress. *Journal of Accounting* & *Marketing*, 6(1), 1-7. Shah, S. S., Jaffari, A. R., Aziz, J., & Ejaz, W. (2011). Workload and Performance of Employees. *Interdisciplinary Journal of Contemporary Research in Business,* 3, 256-267.

Yiyuan, Z., Tangwen, Y., Dayong, D., & Shan, F. (2011). Using NASA-TLX to evaluate the flight deck design in Design Phase of Aircraft . *Procedia Engineering*, *17*, 77-83.

Zadeh, L. A. (1975). Fuzzy Logic and Approximate Reasoning. *Synthese*, 407-428.